일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- 식별자
- 백준
- feature map
- bottleneck
- dp
- Two Pointer
- skip connection
- 데이터모델링
- dfs
- SQLD 후기
- SQL
- CROSS JOIN
- depthwise convolution
- BFS
- 엔터티
- 그래프
- 연산량 감소
- outer join
- Inductive Bias
- pytorch
- get_dummies()
- 1x1 Convolution
- mobilenet
- SQLD
- 정규화
- Depthwise Separable Convolution
- 인접리스트
- resnet
- numpy
- 인접행렬
- Today
- Total
목록연산량 감소 (2)
SJ_Koding
- 부제: ConvNeXt이해하기 3편 - Xception에서 제시된 컨셉으로 유명해졌다. 쉽게 이해할 수 있다. 먼저 Depthwise convolution을 알기 전에 일반적인 Convolution 연산을 알아보자. 기본적인 개념으로 Input channel수는 filter channel수와 동일해야하고, filter의 개수는 output channel이 된다. 이것이 일반적인 convolution의 본질이다. 3x3 filter를 기준으로 모든 채널과 인접한 3x3 feature들을 하나의 scalar값으로 바꾸게 된다. Depthwise convolution Depthwise convolution은 convolution 연산을 '채널별로 독립적으로' 수행한다. 즉 다음 그림과 같다. 그림을 보면 ..
부제: - ConvNeXt 이해하기 1편 - 1x1 convolution 1x1 convolution은 필터 사이즈가 1x1라는 것을 의미한다. 즉, feature map의 feature 하나(Image Input기준으로 픽셀 하나) 에 대해 convolution 연산을 진행한다. 1x1 convolution은 정말 많은 곳에서 볼 수 있는데, 대표적으로 bottleneck 구조나 depthwise-convolution 차원축소를 해야하는 경우에 빈번하게 사용된다. 참고로 GoogleNet에서 1x1 convolution을 사용하면서 널리 알려지고 사용하게 되었다. 위 그림은 채널이 3인 Input이 주어질때, 3x3 convolution을 수행한 것이다. 반면, 위 그림은 1x1 convolution을..