๋ชฉ๋ก์ „์ฒด ๊ธ€ (87)

SJ_Koding

LLaMA-1๋ฅผ ์•Œ์•„๋ณด์ž - 4ํŽธ, Instruction Finetuning๊ณผ Bias๋ฐ Toxicity, Misinformation

LLaMA์˜ Instruction finetuning๊ฒฐ๊ณผ์™€ bias, toxicity, misinformation๋“ฑ LLM์˜ ๋Œ€ํ‘œ์ ์ธ ๋ฌธ์ œ์  ์ •๋„๋ฅผ ๋””ํ…Œ์ผํ•˜๊ฒŒ ํ‰๊ฐ€ํ•œ๋‹ค. LLaMA-1์€ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•œ ํ…Œ์Šคํฌ๋„ ์ผ๋ถ€ ์žˆ์ง€๋งŒ, ์—ฌ์ „ํžˆ ํ•ด๊ฒฐํ•˜์ง€ ๋ชปํ•œ ํ…Œ์Šคํฌ๋„ ์กด์žฌํ–ˆ๋‹ค. ํ•ด๋‹น ํฌ์ŠคํŒ…์€ ์ด์ „ ๊ธ€๋“ค๊ณผ ์ด์–ด์ง€๋Š” ๋‚ด์šฉ์ด๋‹ค. LLaMA: Open and Efficient Foundation Language Models๋ฅผ ์•Œ์•„๋ณด์ž - 3ํŽธ, Main ResultLLaMA์˜ ์„ฑ๋Šฅ ๋น„๊ต์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ์ž์„ธํžˆ ๊ธฐ์ˆ ํ•œ๋‹ค. ํ…Œ์Šคํฌ๋ณ„๋กœ ํ•˜์œ„ ์„น์…˜์„ ๋‚˜๋ˆ„์—ˆ์œผ๋ฉฐ ์–ด๋–ค์‹์œผ๋กœ ์‹คํ—˜์„ ๊ตฌ์„ฑํ–ˆ๋Š”์ง€ ์ž˜ ์„ค๋ช…๋˜์–ด์žˆ๋‹ค. LLaMA๊ฐ€ ๋‹น์‹œ ์™œ ๊ฐ๊ด‘๋ฐ›์•˜๋Š”์ง€ ์•Œ ์ˆ˜ ์žˆ๋Š” ์„น์…˜์ธ ๊ฒƒ ๊ฐ™๋‹ค.Intsjkoding.tistory.com 4. Instruction..

LLM 2024. 4. 27. 14:00
LLaMA: Open and Efficient Foundation Language Models๋ฅผ ์•Œ์•„๋ณด์ž - 2ํŽธ, Approch

์ด์ „ ๊ธ€์— ์ด์–ด Approch์— ๋Œ€ํ•œ ๋‚ด์šฉ์ด๋‹ค. ์ด์ „๊ธ€๊ณผ ๋‹ค๋ฅด๊ฒŒ ์ง€๊ธˆ๋ถ€ํ„ฐ๋Š” ํ•ต์‹ฌ๋งŒ ์š”์•ฝํ•œ๋‹ค. LLaMA-1์˜ Pre-training, Architecture, Optimizer, Efficient implementation์„ ์ •๋ฆฌํ•œ๋‹ค. LLM ๋ชจ๋ธ์—์„œ ์–ด๋–ค์‹์œผ๋กœ ๋ฐ์ดํ„ฐ์…‹์„ ๊ตฌ์ถ•ํ•˜๊ณ , ์–ผ๋งŒํผ์˜ ์ž์›์„ ์‚ฌ์šฉํ•˜๋Š”์ง€, ์–ด๋–ค์‹์œผ๋กœ ํ•™์Šตํ•˜๋Š”์ง€๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋Š” ์„น์…˜์ด๋‹ค. ํ•ด๋‹น ์„น์…˜์„ ๋ฆฌ๋ทฐํ•˜๋ฉด์„œ ๋Œ€๊ฐ• LLM์˜ ์ „๋ฐ˜์ ์ธ ์ ‘๊ทผ๋ฐฉ์‹์„ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. LLaMA: Open and Efficient Foundation Language Models๋ฅผ ์•Œ์•„๋ณด์ž - 1ํŽธ, Introduction ํ•ด๋‹น ๋…ผ๋ฌธ์„ ๋ณด๋ฉด์„œ LLM ์—ฐ๊ตฌ์˜ ํฐ ํ๋ฆ„์„ ๋Œ€๊ฐ•์ด๋ผ๋„ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ตœ๊ทผ์— LLaMA2์— ๋น„ํ•ด ๋น„์•ฝ์ ์œผ๋กœ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚จ (L..

LLM 2024. 4. 23. 17:21
LLaMA: Open and Efficient Foundation Language Models๋ฅผ ์•Œ์•„๋ณด์ž - 1ํŽธ, Introduction

ํ•ด๋‹น ๋…ผ๋ฌธ์„ ๋ณด๋ฉด์„œ LLM ์—ฐ๊ตฌ์˜ ํฐ ํ๋ฆ„์„ ๋Œ€๊ฐ•์ด๋ผ๋„ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ตœ๊ทผ์— LLaMA2์— ๋น„ํ•ด ๋น„์•ฝ์ ์œผ๋กœ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚จ (LLaMA3-8B๊ฐ€ LLaMA2-70B๋ฅผ ์ด๊น€;;) LLaMA3์˜คํ”ˆ์†Œ์Šค๊ฐ€ hugging face์— ๊ณต๊ฐœ๋˜๋ฉด์„œ ๋”์šฑ ๊ถ๊ธˆ์ฆ์ด ์ƒ๊ฒผ๋‹ค. LLM์„ ํ•  ์ผ์ด ์ƒ๊ฒผ๋Š”๋ฐ, Vision์€ ์ž ์‹œ ์ ‘์–ด๋‘๊ณ  LLM ๊ณต๋ถ€์— ํˆฌ์žํ•ด์•ผ๊ฒ ๋‹ค. LLaMA๋ชจ๋ธ์€ Meta์—์„œ ๋ฐœํ‘œํ•œ ๋ชจ๋ธ๋กœ ์ ์€ ํŒŒ๋ผ๋ฉ”ํ„ฐ ์ˆ˜(7B)์™€ ๋Œ€๊ทœ๋ชจ ์–ด๋””์„œ๋“  ์ ‘๊ทผ ๊ฐ€๋Šฅํ•œ ๋ฐ์ดํ„ฐ์…‹(์ˆ˜์กฐ ๊ฐœ token)๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ SOTA๋ฅผ ๋‹ฌ์„ฑํ•œ ๋ชจ๋ธ์ด๋‹ค. ์‚ฌ์ „ ์ง€์‹์ด ๋ถ€์กฑํ•˜๊ธฐ ๋•Œ๋ฌธ์—, Introduction ๋งŒํผ์€ ํ•œ ์ค„ ํ•œ ์ค„ ์ž์„ธํžˆ ์‚ดํŽด๋ณด๊ณ , ์ธ์šฉ๋œ ์ค‘์š”ํ•œ ๋…ผ๋ฌธ์„ ๋Œ€๊ฐ• ํ›‘์–ด ์ •๋ฆฌํ•ด๋ณธ๋‹ค. Introduction Large Languages Mo..

LLM 2024. 4. 22. 16:46
tqdm ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์‚ฌ์šฉ๋ฒ• (+ Train loss ์‹ค์‹œ๊ฐ„ ์ถœ๋ ฅ ๋ฐฉ๋ฒ•)

๋ฐ์ดํ„ฐ๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๊ฑฐ๋‚˜, ํ•™์Šต์„ ๋Œ๋ฆฌ๋Š” ๊ฒƒ ์ฒ˜๋Ÿผ ๋ฐ˜๋ณต์ ์ธ ์ฝ”๋“œ ํ๋ฆ„์ด ์ง„ํ–‰ ๋  ๋•Œ, ๋ฌด์ž‘์ • ๊ธฐ๋‹ค๋ฆฌ๋Š” ๊ฒƒ ๋ณด๋‹จ ์ง„ํ–‰๋„๋ฅผ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉด ์ข‹๋‹ค. ํŠนํžˆ AI๋ฅผ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์„๋•Œ ๊ฑฐ์˜ ํ•„์ˆ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š”๋ฐ, ๋‹จ์ˆœ ์ง„ํ–‰๋ฅ ๋งŒ ๋ณด๋Š”๊ฒŒ ์•„๋‹ˆ๋ผ ์‹ค์‹œ๊ฐ„ loss, smooth loss๋ฅผ ๋ณด๋ฉฐ ํ•™์Šต์ด ์ž˜ ๋˜๊ณ ์žˆ๋Š”์ง€ ์‹ค์‹œ๊ฐ„์œผ๋กœ ํ™•์ธํ•˜๋Š” ์ฝ”๋“œ๋„ ํฌํ•จํ•œ๋‹ค. tqdm ์ด๋ž€?tqdm์€ 'taqaddum'์˜ ์•ฝ์ž์ด๋ฉฐ ์•„๋ž์–ด๋ผ๊ณ  ํ•œ๋‹ค. '์ง„ํ–‰'์ด๋ผ๋Š” ์˜๋ฏธ๋ฅผ ๊ฐ€์ง€๋ฉฐ ํ”„๋กœ๊ทธ๋ž˜๋จธ์—๊ฒŒ ์–ด๋– ํ•œ ํ”„๋กœ์„ธ์Šค์˜ ์ง„ํ–‰ ์ƒํ™ฉ์„ ์‹œ๊ฐ์ ์œผ๋กœ ๋ณด์—ฌ์ฃผ๋Š” ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ด๋‹ค. tqdm ๊ธฐ๋ณธ์ ์ธ ์‚ฌ์šฉ๋ฐฉ๋ฒ•1. tqdm์„ค์น˜pip install tqdm # ๋…ธํŠธ๋ถ ์ƒ์—์„œ ์„ค์น˜ํ•˜๋ ค๋ฉด ์•ž์— !๋ฅผ ๋ถ™์—ฌ์•ผํ•จ 2. tqdm ๋ถˆ๋Ÿฌ์˜ค๊ธฐ & ์‚ฌ์šฉ๋ฐฉ๋ฒ•from tqdm import tqdmfor i..

Google Colab ๋Ÿฐํƒ€์ž„ ๋Š๊น€, ์•ˆ๋Š๊ธฐ๊ฒŒ ๋ฐฉ์ง€ํ•˜๋Š” ๋ฒ•(2024 ์ตœ์‹ )

๊ตฌ๊ธ€ ์ฝ”๋žฉ์€ ๋ฌด๋ฃŒ๋ฒ„์ „ ์ตœ๋Œ€ 12์‹œ๊ฐ„, Pro๋ฒ„์ „ ์ตœ๋Œ€ 24์‹œ๊ฐ„ (๋ณ€๋™๋  ์ˆ˜ ์žˆ์Œ) ์—ฐ๊ฒฐ์ด ์ง€์†๋˜๋ฉฐ ์ด๋•Œ 90๋ถ„๊ฐ„ ์–ด๋– ํ•œ ์ด๋ฒคํŠธ๊ฐ€ ์—†์„ ๊ฒฝ์šฐ ๋Ÿฐํƒ€์ž„์„ ์ข…๋ฃŒ์‹œ์ผœ๋ฒ„๋ฆฐ๋‹ค.ํ•™์Šต์ด ์˜ค๋ž˜๊ฑธ๋ฆฌ๋Š” AI ๋ชจ๋ธ์„ Google Colab์—์„œ ํ•™์Šต์‹œํ‚ฌ๋•Œ, ์ด๋ฒคํŠธ๋ฅผ ์ง€์†์ ์œผ๋กœ ๋‚ ๋ ค์ค˜์•ผํ•˜๋Š”๋ฐ ๋งค๋ฒˆ ๊ทธ๋Ÿด ์ˆ˜๋„ ์—†๋‹ค.์ด๋ฏธ ๋Ÿฐํƒ€์ž„ ๋Š๊น€ ์˜ˆ๋ฐฉ ๋ฐฉ๋ฒ•์€ ๋งŽ์ง€๋งŒ, ๊ตฌ๊ธ€์ฝ”๋žฉ์˜ ์ง€์†์ ์ธ ์—…๋ฐ์ดํŠธ๋กœ ๋„๋ฆฌ ํผ์ ธ์žˆ๋Š” ๊ฒƒ๋“ค์ด ๋ฌด์šฉ์ง€๋ฌผ์ด ๋˜๋ฒ„๋ ธ๋‹ค.์Šคํƒ์˜ค๋ฒ„ํ”Œ๋กœ์šฐ์— ์–ด๋Š ํ•œ ์œ ์ €๊ฐ€ ์ตœ์‹ ์ฝ”๋“œ๋ฅผ ๊ณต์œ ํ–ˆ๋‹ค. How can I prevent Google Colab from disconnecting?Is there a way to programmatically prevent Google Colab from disconnecting on a timeout? The fo..

ConvNeXt (A ConvNet for the 2020s, facebook) ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

- ๋ถ€์ œ: ConvNeXt ์ดํ•ดํ•˜๊ธฐ ์ตœ์ข… - Image Classification model์„ ํ•™์Šตํ•  ์ƒํ™ฉ์ด ์ƒ๊ฒจ์„œ ConvNeXt๋ฅผ ์‚ฌ์šฉํ•ด๋ดค๋Š”๋ฐ ์„ฑ๋Šฅ์ด ์ •๋ง ์ข‹๊ฒŒ ๋‚˜์™”๋‹ค. ๋Œ€์ฒด ์ด ๋ชจ๋ธ์ด ๋ญ๊ธธ๋ž˜? ํ•˜๊ณ  ๋ดค๋”๋‹ˆ Facebook์ด ๋ฐœํ‘œํ•œ ๋…ผ๋ฌธ์ด์–ด์„œ ํฅ๋ฏธ๊ฐ€ ์ƒ๊ฒจ ์ด ๋…ผ๋ฌธ์„ ๊ณต๋ถ€ํ•˜๊ฒŒ๋˜์—ˆ๋‹ค. ๋…ผ๋ฌธ์„ ์ฝ์œผ๋ฉด์„œ ์ •๋ง CNN์— ๋Œ€ํ•ด ๊ณต๋ถ€ํ•˜๊ธฐ ์ข‹์€ ๋…ผ๋ฌธ์ด๋ผ๋Š” ์ƒ๊ฐ์ด ๋“ค์—ˆ๋‹ค. ๋˜, ๋…ผ๋ฌธ๊ตฌ์„ฑ์ด ์ •๋ง ์žฌ๋ฐŒ๋‹ค. ์—ฐ๊ตฌ์— ๋”ฐ๋ฅธ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์ˆœ์ฐจ์ ์œผ๋กœ ๋ฐฐ์น˜ํ•˜์—ฌ ๋งˆ์น˜ ํ•จ๊ป˜ ์—ฐ๊ตฌ๋ฅผ ํ•œ ๊ฒƒ๊ณผ ๊ฐ™์€ ๋Š๋‚Œ์„ ์ค€๋‹ค. ์–ด๋–ค ๋‚ด์šฉ์ด๊ธธ๋ž˜? extreme ์š”์•ฝ: CNN๊ณ„์—ด ๋ชจ๋ธ(ResNet50์‚ฌ์šฉ)์„ ์ตœ์‹ ์— ์•Œ๋ ค์ง„ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜๋ฉด์„œ ๊ทนํ•œ์œผ๋กœ ๋Œ์–ด์˜ฌ๋ ค๋ณด์ž~! ๋Œ€์‹ , pure CNN์œผ๋กœ. ์„ฑ๊ณต~! Abstract 2020๋…„๋Œ€, Vision Task์—์„œ..

Deep Learning 2024. 4. 4. 13:46
manifold์™€ Inverted Bottleneck์˜ ์„ค๋ช…

- ๋ถ€์ œ: ConvNeXt์ดํ•ดํ•˜๊ธฐ 5ํŽธ- (๋ณธ ํฌ์ŠคํŒ…์€ https://gaussian37.github.io ๊น€์ง„์†” ์—ฐ๊ตฌ์›๋‹˜์˜ MobileNet V2 ๋ธ”๋กœ๊ทธ ๊ธ€์„ ์ ๊ทน ์ฐธ๊ณ ํ•˜์˜€์Šต๋‹ˆ๋‹ค.) ์ผ๋ฐ˜์ ์ธ Bottleneck๊ตฌ์กฐ๋Š” ์•„๋ž˜ ํฌ์ŠคํŒ…์—์„œ ๋‹ค๋ค˜๋‹ค. Bottleneck ๊ตฌ์กฐ(resnet)์˜ ์„ค๋ช… ๋ฐ Pytorch ์˜ˆ์‹œ ๋ถ€์ œ: - ConvNeXt ์ดํ•ดํ•˜๊ธฐ 2ํŽธ - Bottleneck์ด๋ž€ ์šฉ์–ด ์ž์ฒด๋Š” ๋ณ‘๋ชฉํ˜„์ƒ์„ ์˜๋ฏธํ•œ๋‹ค. ์ •๋ง ๋งŽ์€ ๋ถ„์•ผ์—์„œ ์“ฐ์ด๋Š” ๋ง์ด๋‹ค. ์‹œ์Šคํ…œ ๋ถ„์•ผ์—์„œ์˜ ๋ณ‘๋ชฉํ˜„์ƒ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค. - ์‹œ์Šคํ…œ ๋‚ด์—์„œ ์ „์ฒด์  sjkoding.tistory.com Manifold CNN์—์„œ manifold๊ฐœ๋…์€ ๋ฐ์ดํ„ฐ๊ฐ€ ์กด์žฌํ•˜๋Š” ๊ณ ์ฐจ์› ๊ณต๊ฐ„ ๋‚ด์—์„œ์˜ ์ €์ฐจ์›์  '๊ตฌ์กฐ'๋ฅผ ์˜๋ฏธํ•œ๋‹ค. CNN์„ ํฌํ•จํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ๋“ค..

Deep Learning 2024. 4. 4. 11:28